Abstract
Probabilistic graphical models (PGMs) are powerful tools for solving systems of complex relationships over a variety of probability distributions. However, while tree-structured PGMs always result in efficient and exact solutions, inference on graph (or loopy) structured PGMs is not guaranteed to discover the optimal solutions. It is in principle possible to convert loopy PGMs to an equivalent tree structure, but this is usually impractical for interesting problems due to exponential blow-up. To address this, we developed the purge-and-merge algorithm. This algorithm iteratively nudges a malleable graph structure towards a tree structure by selectively merging factors. The merging process is designed to avoid exponential blow-up by way of sparse structures from which redundancy is purged as the algorithm progresses. We set up tasks to test the algorithm on constraint-satisfaction puzzles such as Sudoku, Fill-a-pix, and Kakuro, and it outperformed other PGM-based approaches reported in the literature. While the tasks we set focussed on the binary logic of CSP, we believe the purge-and-merge algorithm could be extended to general PGM inference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.