Abstract

Abstract The behavior of the tropopause inversion layer (TIL) during the 2009 sudden stratospheric warming (SSW) is analyzed using NASA’s Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), and short-term simulations with the MERRA-2 general circulation model. Consistent with previous studies, it is found that static stability in a shallow layer above the polar tropopause sharply increases following the SSW, leading to a strengthening of the high-latitude TIL. Simultaneously, the height of the thermal tropopause decreases by around 1 km. Similar behavior is also detected during other major SSW events between the years 2004 and 2013. Using an ensemble of general circulation model forecasts initialized from MERRA-2, it is demonstrated that the primary cause of the strengthening of the TIL is an increased convergence of the vertical component of the stratospheric residual circulation in response to an SSW-induced acceleration of the mean downward motion between 75° and 90°N. In addition, ~6% of the strengthening in 2009 is attributed to an enhanced anticyclonic circulation at the tropopause. A preliminary analysis indicates that during other recent SSW events there was a significant increase in the convergence of the vertical residual wind velocity throughout the middle and lower stratosphere. The static stability increase simulated by the model during the 2009 SSW is 60%–80% of that seen in MERRA-2. The underestimate is traced back to a tendency for the forecasts to underestimate the resolved planetary wave forcing on the stratosphere compared to the reanalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call