Abstract

This paper focuses on the cutout-strengthening of perforated steel plates subjected to uniaxial compressive loads. The square plates considered each has a centrally placed circular hole and four simply supported edges in the out-of-plane direction. Four types of stiffeners named ringed stiffener ( RS), flat stiffener ( FS), longitudinal stiffener ( LS) and transverse stiffener ( TS) are mainly discussed. The finite element method (FEM) has been employed to analyse the elastic and elasto-plastic buckling behaviors of strengthened and unstrengthened perforated plates. The results show that the strengthened perforated plates have higher buckling strengths than those of the unstrengthened ones, while the elevations in elastic buckling stress and elasto-plastic ultimate strength are closely related to stiffener types (i.e., RS, FS, LS and TS) as well as plate geometric parameters (i.e., a plate slenderness ratio and a hole diameter ratio). Furthermore, comparisons of strengthening efficiency considering the variations of buckling stress with stiffener weight are carried out, and recommendations on the most efficient cutout-strengthening methods for the uniaxially compressed perforated square plates with centric circular holes are proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.