Abstract

The equiatomic CrMnFeCoNi high-entropy alloy (HEA) exhibits outstanding toughness and excellent strength-ductility combination at cryogenic temperatures. However, its strength is relatively low at room temperature. In order to strengthen this HEA, microalloying additions of 0.8 at.% Nb and C were made and its properties and microstructure evaluated. It was found that the microalloying resulted in the formation of carbide precipitates and a reduction of the grain size to ∼2.6 μm. As a result, the room-temperature tensile yield strength (732 MPa) of the microalloyed HEA is roughly double that of the base HEA (with a concomitant increase in the ultimate strength) while its ductility is maintained at a relatively high level (elongation to fracture of ∼32%). The strengthening is due to precipitation hardening from the nanoscale carbide particles and grain refinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.