Abstract

The present paper describes the study of the synergism between the matrix microstructure and reinforcement phase in electrodeposited nanocomposite coatings. Adding hard nanoparticles into the metallic matrix leads to hardening of the coating. The effects of particle load, size and dispersion on hardening as well as their influence on metal microstructure refinement were studied. The relative contributions of strengthening factors in Ni/nano-SiC composites, namely, Hall–Petch strengthening, Orowan strengthening, enhanced dislocation density and particles incorporation, were evaluated. The production of various coatings under different stirring conditions and powders resulted in dissimilarities in the incorporation of particles. The Hall–Petch relationship for pure nickel was determined using samples produced under different current densities. Additionally, the grain refinement resulting from the particle codeposition and agitation mode were identified as influential factors in grain-size strengthening. Dislocation density strengthening was significant in electrodeposits produced using ultrasonic agitation, while it was negligible in layers produced under other conditions. Particles codeposition affected the magnitude of Orowan strengthening, resulting in cases where strengthening was negligible despite the presence of particles. The sum of contributions and the modified Clyne methods were used to calculate the hardness of the composites based on the contribution of each strengthening factor, and the calculation results were in good agreement with experimental data. The wear behavior of the composites was analyzed by pin-on-disk measurements, and the results correlated with the strengthening mechanisms. Particle size, dispersion and content increased the strengthening effects as well as the hardness and wear resistance of the coatings.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call