Abstract

Microalloyed steels are used widely in oil and gas pipelines. They are a class of high-strength, low-carbon steels that contain small additions (in amounts less than 0.1 wt pct) of Nb, Ti, and/or V. The steels may contain other alloying elements, such as Mo, in amounts exceeding 0.1 wt pct. Precipitation in these steels can be controlled through thermomechanical-controlled processing, leading to precipitates with sizes that range from several microns to a few nanometers. Microalloyed steels have good strength, good toughness, and excellent weldability, which are attributed in part to the presence of the nanosized carbide and carbonitride precipitates. Because of their fine sizes, wide particle size distribution, and low volume fractions, conventional microscopic methods are not satisfactory for quantifying these precipitates. Matrix dissolution is a promising alternative to extract the precipitates for quantification. Relatively large volumes of material can be analyzed so that statistically significant quantities of precipitates of different sizes are collected. In this article, the microstructure features of a series of microalloyed steels (X70, X80, and X100) as well as a Grade 100 steel are characterized using optical microscopy (OM) and scanning electron microscopy (SEM). A chemical dissolution technique is used to extract the precipitates from the steels. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) are combined to analyze the chemical composition of these precipitates. Rietveld refinement of the XRD patterns is used to quantify fully the relative amounts of these precipitates. The size distribution of the nanosized precipitates is quantified using dark-field imaging (DF) in the TEM. The effects of microalloying content, finish rolling temperature (FRT), and coiling temperature (CT)/interrupted cooling temperature (ICT) on the grain size and the amount of nanoprecipitation are discussed. Individual strengthening contributions from grain size effects, solid-solution strengthening, and precipitation strengthening are quantified to understand fully the strengthening mechanisms for these steels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call