Abstract

Strengthening mechanisms of silicate glass by the inclusion of alumina particles of different volume fractions and different particle sizes are reported. The formulas of three responsible strengthening mechanisms, based on inclusion/crack interactions and interfacial elemental diffusion, were deduced; these include crack deflection, crack bridging and interdiffusion. The strength of the glass/alumina composites increased with inclusion fraction, but followed strengthening mechanisms that varied with alumina particle size. Crack deflection and bridging mechanisms dominated in strengthening for the glass/alumina (at mean particle size of 6μm) composites while interdiffusion mechanism played a major role in the glass/alumina (at mean particle size of 1μm) composites. The theoretical deduction of strengthening mechanisms depending on the particle size of alumina inclusions was demonstrated by the experimental strength data and fracture surface characteristics of the glass/alumina composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.