Abstract

Performing ore pretreatment before grinding is particularly crucial for improving mineral liberation and conserving energy. This study proposed an innovative magnetic pulse pretreatment (MPP) technology that primarily used the magnetostrictive effect in an alternating magnetic field to enhance mineral liberation. The effect of MPP on the liberation degree and magnetite separation for magnetite ore were systematically investigated. The results show that the size and volume of the magnetic mineral particles in the ore due to the stretching effect of the alternating magnetic field resulted in microcracks at the interface between different minerals. Compared with the unpretreated process in an industrial test, increment in the −0.043 mm content of the ball mill discharge increased by 3.33 percentage points, increment in the liberation degree of magnetite across the entire particle size range increased by 5.82 percentage points, and increment in the iron concentrate grade increased by 1.22 percentage points, with an error range of 0.1%, due to MPP. The industrial application of MPP brings an enormous economic benefit potential to iron ore utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.