Abstract

Topsoil removal, among other restoration measures, has been recognized as one of the most successful methods to restore biodiversity and ecosystem functioning in European grasslands. However, knowledge about how removal as well as other restoration methods influence interactions between plant and microbial communities is very limited. The aims of the current study were to understand the impact of topsoil removal on plant-microorganism interactions and on soil nitrogen (N) mineralization, as one example of ecosystem functioning. We examined how three different grassland restoration methods, namely ‘Harvest only’, ‘Topsoil removal’ and ‘Topsoil removal + Propagules (plant seed addition)’, affected i) the interactions between plants and soil microorganisms, ii) soil microbial community assembly processes, and iii) soil N mineralization. We compared the outcome of these three restoration methods to initial degraded and target semi-natural grasslands in the Canton of Zurich, Switzerland. We were able to show that ‘Topsoil removal’ and ‘Topsoil removal + Propagules’, but not ‘Harvest only’, reduced the soil total N pool and available N concentration, but increased soil N mineralization and strengthened the plant-microorganism interactions. Microbial community assembly processes shifted towards more deterministic after both topsoil removal treatments. These shifts could be attributed to an increase in dispersal limitation and selection due to stronger interactions between plants and soil microorganisms. The negative relationship between soil N mineralization and microbial community stochasticity indicated that microbial assembly processes, to some extent, can be incorporated into model predictions of soil functions. Overall, the results suggest that topsoil removal may change the microbial assembly processes and thus the functioning of grassland ecosystems by enhancing the interaction between plants and soil microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.