Abstract
The quantum relative entropy between two states satisfies a monotonicity property meaning that applying the same quantum channel to both states can never increase their relative entropy. It is known that this inequality is only tight when there is a "recovery map" that exactly reverses the effects of the quantum channel on both states. In this paper we strengthen this inequality by showing that the difference of relative entropies is bounded below by the measured relative entropy between the first state and a recovered state from its processed version. The recovery map is a convex combination of rotated Petz recovery maps and perfectly reverses the quantum channel on the second state. As a special case we reproduce recent lower bounds on the conditional mutual information such as the one proved in [Fawzi and Renner, Commun. Math. Phys., 2015]. Our proof only relies on elementary properties of pinching maps and the operator logarithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.