Abstract

TaC ceramics with 0-0.237 wt% B addition were prepared by hot pressing. The effect of B addition on the phase constitution, interfacial chemistry/bonding and mechanical properties of the TaC ceramics were investigated. Upon B addition, the elimination of O impurity and segregation of B at grain boundaries were evidenced, accompanied by an increase in bonding strength of the TaC grains, to result in a fracture mode change from intergranular to transgranular and a reduced fracture toughness. Addition of excessive B resulted in the formation of TaB2 and C within TaC ceramics. Further, TaC-TaB2-SiC composites were prepared by Si addition. Coherent bonding between TaB2 and TaC was preserved in the TaC-TaB2-SiC composites, and residual stresses due to thermal expansion mismatch of the different phases increased flexural strength and fracture toughness of the composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.