Abstract
Barthe proved that the regular simplex maximizes the mean width of convex bodies whose John ellipsoid (maximal volume ellipsoid contained in the body) is the Euclidean unit ball; or equivalently, the regular simplex maximizes the ℓ-norm of convex bodies whose Löwner ellipsoid (minimal volume ellipsoid containing the body) is the Euclidean unit ball. Schmuckenschläger verified the reverse statement; namely, the regular simplex minimizes the mean width of convex bodies whose Löwner ellipsoid is the Euclidean unit ball. Here we prove stronger stability versions of these results. We also consider related stability results for the mean width and the ℓ-norm of the convex hull of the support of centered isotropic measures on the unit sphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.