Abstract

Nickel-cobalt spinel catalyst (NCO) is a promising catalyst for air oxidation of humic acid, which is a typical natural refractory organic matter and a precursor of toxic disinfection by-products. In this study, reductive etchers, NaBH4 or Na2SO3, were used to adjust the NCO surface structure to increase the performance. The modified catalyst (NCO-R) was characterized, and the relationship between its intrinsic properties and catalytic paths was discovered. The results of O2-temperature programmed desorption, NH3-temperature programmed desorption, and X-ray photoelectron spectroscopy (XPS) demonstrated that reductant etching introduced oxygen vacancies to the surface of NCO and increased active surface oxygen species and surface acidity. In addition, the modification did not change the raw hollow sphere structure of NCO. The crystallinity and specific surface area of NCO-R increased, and average pore size of NCO-R decreased. XPS results showed that the ratio of Co3+/Co2+ in NCO-R decreased compared with NCO, while the ratio of Ni3+/Ni2+ increased. The results of H2-temperature programmed reduction showed that the H2 reduction ability of NCO-R was stronger. Due to these changes in chemical and physical properties, NCO-R exhibited much better catalytic performance than NCO. In the catalytic air oxidation of humic acid at 25 °C, the total organic carbon (TOC) removal rate increased significantly from 44.4% using NCO to 77.0% using NCO-R. TOC concentration of humic acid decreased by 90.0% after 12 h in the catalytic air oxidation using NCO-R at 90 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.