Abstract
The size effect in the structural strength of fiber reinforced composites has been typically analyzed for tensile failures. However, this is not true for the equally important compressive failures, primarily due to the difficulties in conducting compression tests on specimens of multiple sizes. These size effects are analyzed here numerically for two important compressive failure mechanisms in composites, viz. (i) fiber kink bands forming under longitudinal compression (typically accompanied by axial splitting matrix cracks) and (ii) inclined shear cracks forming under transverse compression. The former mechanism is modeled by a semi-multiscale microplane model, while the latter by the fixed crack model. Both models are calibrated and verified using available test data on carbon fiber composites and then used to predict the failure and load bearing capacities of geometrically scaled pre-cracked specimens of different sizes. In all cases, the predicted failure is found to be of a propagating nature, accompanied by release of strain energy from the specimen causing a distinct size effect in the nominal strength. For the composite considered here, under longitudinal compression, the fracture process zone (FPZ) is found to be fairly small (<1 mm) and the strength size effect is seen to follow linear elastic fracture mechanics (LEFM). The size effect deviates from LEFM for smaller specimen sizes due to increased flaw size insensitivity but cannot be fitted by Bažant's size effect law since the geometric similarity of the failure mode is lost. On the other hand, under transverse compression the FPZ is found to be much larger (34 to 42 mm) and the size effect is found to obey Bažant's size effect law, deviating from LEFM. The failure is geometrically similar despite being inclined to the pre-crack. These findings provide evidence of the general applicability of fracture mechanics-based size effect laws to compressive failure in fiber composites, and prompt suitable experimental investigations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.