Abstract
High-performance concrete (HPC) experiences significant degradation in its mechanical properties after fire exposure. While various post-fire curing methods have been proposed to rehabilitate thermally damaged concrete (TDC), the physical and chemical changes occurring during these processes are not well-understood. This study examines the strength and microstructure restoration of HPC through water and water-CO2 cyclic recuring. HPC samples were initially heated to 600 °C and 900 °C, then subjected to water and cyclic recuring. Results indicate that the mechanical performance recovery of thermally damaged HPC is significantly better with cyclic recuring than with water recuring. The compressive strength of HPC samples exposed to 600 °C and 900 °C reached 131.6% and 70.3% of their original strength, respectively, after cyclic recuring. The optimal recuring duration for substantial recovery in thermally damaged HPC was determined to be 18 days. The strength recovery is primarily due to the healing of microcracks and the densification of decomposed cement paste. These findings clarify the physical and chemical processes involved in post-fire curing of HPC, highlighting the potential of water and water-CO2 cyclic recuring in the rehabilitation of TDC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.