Abstract
Nowadays, using biopolymer as a ground improvement method has become very popular. However, since biopolymers are organic and degradable, their long-term effect is not fully known. In this study, the effects of biopolymers on the mechanical behavior of kaolin clay were investigated through a comprehensive program of experiments. Two types of biopolymer, i.e. xanthan gum and guar gum were chosen to investigate the effect of biopolymer type. For this purpose, specimens were prepared using standard Proctor energy at four different water contents (25%, 30% 35% and 40%) with 0.5%, 1%, 1.5% and 2% biopolymer inclusions. The specimens were cured for 1 d, 7 d, 28 d and 90 d. Moreover, some of the specimens were kept in the curing room for 3 years to observe the long-term effect of the biopolymers. At the end of the curing periods, the specimens were subjected to unconfined compression test, and scanning electron microscopy (SEM) analysis was performed to observe the mechanism of strength improvement. The results revealed that the unconfined compressive strength (UCS) of the specimens treated with biopolymers increased in all biopolymer inclusion levels and water contents up to a 90-d curing period. For specimens containing xanthan gum, the maximum strength increase was observed at 25% water content and 2% xanthan gum with 90-d curing. The strength increased 5.23 times induced by xanthan gum addition when compared to the pure clay. Moreover, the increase in strength reached 8.53 times in specimens treated with guar gum. Besides, increasing water content caused more ductile behavior, thus increasing the axial deformation. • Xanthan gum and guar gum biopolymers were used to stabilize kaolin clay. • Unconfined compression tests were conducted on stabilized specimens at various water content. • Micro structure was studied by SEM pictures to explain strength gaining mechanism. • Biopolymer treated specimens were cured up to 3 years.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Rock Mechanics and Geotechnical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.