Abstract

AbstractHigh-strength concretes (HSC) were prepared with five different binder contents, each of which had several silica fume (SF) ratios (0–15%). The compressive strength was determined at 3, 7, and 28 days, resulting in a total of 60 sets of data. In a fuzzy logic (FL) algorithm, three input variables (SF content, binder content, and age) and the output variable (compressive strength) were fuzzified using triangular membership functions. A total of 24 fuzzy rules were inferred from 60% of the data. Moreover, the FL model was tested against an artificial neural networks (ANNs) model. The results show that FL can successfully be applied to predict the compressive strength of HSC. Three input variables were sufficient to obtain accurate results. The operators used in constructing the FL model were found to be appropriate for compressive strength prediction. The performance of FL was comparable to that of ANN. The extrapolation capability of FL and ANNs were found to be satisfactory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.