Abstract

Purpose This paper aims to promote a strength model for TiC-TiB2 composite ceramic with non-ellipsoidal particles bridging. Based on the microstructure of TiC-TiB2 composite ceramic, equivalent average residual stress under particles interaction is calculated with the interact direct derivative estimate. Supposing the crack opening displacement keeps ellipsoidal under the TiB2 particles bridging, crack growth resistance curve is obtained. Design/methodology/approach Composite strength under R-cure with crack unstable propagation is calculated. Based on this model, influences of particles volume fraction, shape, size and other parameters on strength are analyzed. Findings Results indicated that calculated values are consistent to the tested data. Crack growth resistance increases with crack propagation and TiB2 volume fraction. The TiB2 particle does not pull-out entirely even ceramic fracture. Ceramic strength increases with the TiB2 particle volume fraction, the ratio of platelet diameter and thickness, and it reduces with particle thickness. Originality/value Supposing the crack open displacement keeps ellipsoidal under the TiB2 particles bridging, crack growth resistance curve is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.