Abstract

A novel two-step bonding of Ti-6Al-4V/Si3N4 joint was developed with Nb interlayer as residual-stress reliever via low-pressure transient-liquid-phase bonding (TLPB) of Ti-6Al-4V/Nb side prior to active-metal brazing of Nb/Si3N4 side. While 1.75 mass% of Ti in a 50-µm-thick CUSIL-ABA® filler was sufficient for sound bonding at Nb/Si3N4 side when brazed at 1103 K for 10 min, one-step-brazed joints with bonding area of 10 × 10 mm2 were prone to failure at the Ti-6Al-4V/Nb side due to brittle Cu-Ti intermetallic compounds (IMCs). Replacing brazing of Ti-6Al-4V/Nb side with TLPB using pure Cu and Ni foils as filler at 1213 K for 180 min eliminated the formation of brittle IMCs via homogenization of (α + β)-Ti; bending strength increased to 193 MPa with residual-stress-induced failure from Si3N4 ceramics. Finally, effectiveness of stress-accommodation via Nb interlayer and filler’s plastic flow was quantitatively verified with reasonable fidelity by finite-element analysis incorporating temperature-dependent elasto-plastic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call