Abstract

Static strength of multi-planar welded joints with seven brace members and one chord member made of circular hollow sections is investigated in the paper, based on the engineering practice of moveable roof trusses of Shanghai Qizhong Tennis Center. Firstly, comparative experiments were carried out on two model joints with a scale of 1:3. One joint was not reinforced, whereas the other was reinforced with ring stiffeners inside the chord member. Failure mode, stress distribution, plastic-zone development and ultimate load capacity of the joints were investigated, and effects of the ring stiffeners on the joint behavior were observed through the experiments. Secondly, finite element analysis of both the tested model joints was performed. The calculation results are in a good agreement with the experimental results, which indicated that the numerical analysis was quite effective. Finally, the strategy for enhancing strength of the complicated joint is discussed. Parameters study on the constructional details of ring stiffeners was carried out using FE method. The present research shows the multi-planar circular hollow section joint with high ratio of diameter to thickness of the chord and multiple braces is liable to chord plasticity under axial tension and compression on the braces. For the design of the joint, it is suggested that the ring stiffeners are installed insider the chord to meet needs of enough stiffness and strength. Both position and number of the stiffeners should be carefully determined based on the axial forces on the braces and their diameters. The stiffener thickness should not be less than the chord thickness, and the diameter of the hole at the center of the stiffener should not be greater than half of the chord diameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.