Abstract

We present here new paleointensity data from 39 sampling sites collected from the quenched margins of pillow lavas and dikes exposed within the Troodos Ophiolite (∼92 Ma), formed during the Cretaceous Normal Superchron (CNS), a period of approximately 40 million years when the geomagnetic field reversed extremely infrequently if at all. Monte Carlo simulations suggest that a minimum of 25 estimates are necessary for a reasonably robust estimate for the average field strength. Our data suggest a dipole strength equivalent to the present field or nearly twice the post‐CNS average. The mean and standard deviation of the dipole moment (81 ± 43 ZAm2; Z = 1021) from the 57 data points compiled here agree remarkably well with those predicted from the long paleointensity record derived from DSDP Site 522. The new data set for the CNS suggests a picture of a strong and stable field during the period of time when it stopped reversing. Moreover, the similarity of the CNS data with the present geomagnetic field suggests that it is presently in a state of unusual polarity stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.