Abstract
Innovations in jet grouting technology have primarily focused on the cutting efficiency of the jets, with the aim of creating larger columns and increasing the productivity of construction sites. Relatively little attention has been paid to the consequences of the grouting system on the mechanical properties of the formed material. This paper investigates this aspect by analysing the results of two field trials carried out in both sandy and clayey soils, where single and double fluid jet grouting were simultaneously performed, with varied grout composition and injection parameters. Parallel uniaxial compressive tests on samples cored from the columns show that the material formed with the double system is systematically lower in strength than the material formed using the single fluid system. The mineralogical composition of samples cored from the columns was analysed by performing parallel Scanning Electron Microscopy (SEM), X-ray diffraction analysis (XRD), Differential Thermal Analysis (DTA) and Thermo-Gravimetric Analyses (TGA) to determine the reasons for this difference. A lower proportion of cementitious products, an accelerated carbonation of portlandite and a less homogeneous distribution of cement hydration products was found on the surface of the soil particles of the double samples than for the single fluid columns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.