Abstract

A simple analytical study of a single-atom-thick sheet of graphene under biaxial tension is presented. It is based on the combination of the approaches of continuum and molecular mechanics. On the molecular level the Tersoff-Brenner potential with a modified cut-off function is used as an example. Transition to a continuum description is achieved by employing the Cauchy–Born rule. In this analysis the graphene sheet is considered as a crystal composed of two simple Bravais lattices and the mutual atomic relaxation between these lattices is taken into account. Following this approach a critical failure surface is produced for strains in biaxial tension. The adopted methodology is discussed in the context of the alternative approaches. ► Analytical study of a single-atom-thick sheet of graphene under biaxial tension is presented. ► Approaches of continuum and molecular mechanics are combined. ► The graphene sheet is considered as a crystal composed of two simple Bravais lattices. ► The mutual atomic relaxation between these lattices is taken into account. ► A critical failure surface is produced for strains in biaxial tension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.