Abstract
There has long been debate regarding the primacy of bottom-up and top-down effects as factors shaping ecosystems. The exploitation ecosystems hypothesis (EEH) predicts that predators indirectly benefit plants because their top-down effects limit herbivores’ consumption of plants, and that the strength of trophic cascade increases with increasing primary productivity. However, in arid environments, pulses of primary productivity produced by irregular rainfall events could decouple herbivore–plant and predator–prey dynamics if high conversion efficiency from seed biomass to consumers allows the rapid build-up of consumer populations. Here, we test predictions of the EEH in an arid environment. We measured activity/abundances of dingoes, red kangaroos and grasses, and diet of dingoes, in landscapes where dingoes were culled or not culled over 3 years. Dingo activity was correlated with rainfall, and their tracks were less frequent at culled sites. Kangaroo abundance was greater at sites where dingoes were culled and increased with rainfall in the previous 6 months. Grass cover was greater at sites where dingoes were not culled and increased with rainfall in the previous 3 months. During a period of average rainfall, dingoes primarily consumed rodents and increased their consumption of kangaroos during a period of drier conditions. Our results are consistent with the hypothesis that suppression of an apex predator triggers a trophic cascade, but are at odds with the EEH’s prediction that the magnitude of trophic cascades should increase with primary productivity. Our study demonstrates that temporal fluctuations in primary productivity can have effects on biomasses of plants and consumers which are in many ways analogous to those observed along spatial gradients of primary productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.