Abstract
This paper shows that a bio-inspired design methodology is an effective method to strengthen composite T-joints under bending loading. The ply angles in the laminate of a carbon/epoxy T-joint were tailored using an optimisation program mimicking the evolutionary process of adaptive growth in which the wood microfibril orientation in and around the tree branch-trunk joint is tailored to the prevailing bending loading condition. A single objective optimisation program with four ply angle input variables was used to compute the optimal design of the ply stacking pattern which minimised the interlaminar tensile stress in composite T-joints where delamination damage is initiated. FEA and experimental testing were performed to compare the structural properties of the bio-inspired T-joint against a base-line T-joint with a quasi-isotropic ply stacking pattern. The bio-inspired T-joint exhibited a higher bending failure initiation load (improved by 40%) and elastic strain energy capacity (increased by 75%) than the base-line T-joint.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.