Abstract

Zirconium diboride and hafnium diboride were fabricated by hot-pressing at 1800°C and 120,000 psi. Bend strengths were measured on the fully dense materials from 25° to 1400° C in an argon atmosphere. These diboride compounds do not exhibit any gross plastic flow in the temperature range studied. The bend strengths go through a maximum between 700° and 1000°C and vary from 39,000 to 68,000 psi for HfB2 and 30,000 to 56,000 psi for ZrB2. The maxima in strength correspond to maxima in the fraction of transgranular fracture. The bend strength and room-temperature elastic modulus measurements were combined with available thermal conductivity and expansion data to calculate thermal stress resistance parameters. Under steady-state heat flow conditions, the calculated thermal stress resistance parameters of the borides are higher than those calculated for other refractory compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.