Abstract

High dispersion of rock mass strength causes significant difficulties in strength prediction. This study aims to investigate experimentally the strength prediction model for brittle damaged rock with multiscale initial damage based on P-wave velocity using regression analysis. Intact dolomitic limestone was collected from a deep metal mine in Southern China. Rock specimens with different initial damage degrees were prepared through the application of uniaxial compressive stress. Both intact rock and damaged rock specimens were tested for P-wave velocity and uniaxial compressive strength (UCS). The test results indicate that the method of prefabricating initial damage to the rock mass through uniaxial compressive stress is feasible. The UCS values of the damaged rock specimens were correlated with the square of the P-wave velocity (linearly positive) and the initial damage (linearly negative). The parameters of the new strength prediction model have a physical significance, and its results are within the upper and lower limits of the 95% confidence interval of the UCS. The strength prediction model considering multiscale initial damage based on P-wave velocity could reasonably predict the strengths of brittle rock masses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.