Abstract

This study proposes a method of using Polyvinyl Alcohol Engineered Cementitious Composites (PVA-ECC) encasement to provide continuous restraints along the compression flange of High Strength Steel (HSS) section so that it will reach its sectional plastic moment resistance under bending without lateral restraint. In order to demonstrate the effectiveness of the proposed method, experimental and numerical investigations were carried out to study the flexural strength of the ECC encased HSS beams (ECC-HSS beams). Six simply supported beams fabricated with identical HSS sections but with different encasement configurations were tested until failure. Flexural resistance and failure modes of the ECC-HSS beams were compared with similar bare HSS and normal concrete (NC) encased HSS beams (NC-HSS beams). It was found that when compared with the bare HSS and NC-HSS beams, a significant enhancement in flexural resistance was achieved for the ECC-HSS beams. More importantly, this study confirmed that the compressive ECC layers was crushed after the compression flanges were yielded and therefore successfully prevented the onset of lateral torsional buckling. Besides the flexural responses, the interfacial slip behaviours along the compression flange of the HSS section were also studied. Finally, a finite element (FE) model was developed and validated against the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.