Abstract
This study investigated the microstructures and mechanical properties of a metastable high-entropy alloy (HEA) Fe34Co34Cr20Mn6Ni6 produced by laser powder bed fusion (LPBF) and compared them with those of an as-cast one. The LPBF-processed HEA exhibited a face-centered cubic (FCC) structure due to the high cooling rate of the laser-induced melt pools. In contrast, the as-cast HEA featured a mass of hexagonal close-packed (HCP) phase within the FCC matrix due to the elemental segregation resulting from low cooling rates. The LPBF-processed HEA exhibited superior strength-ductility synergy when compared to its as-cast counterpart. The yield strength, ultimate strength, and plasticity of the LPBF-processed HEA were 305 MPa, 808 MPa, and 18.9 %, respectively, which were much higher than those of the as-cast HEA (171 MPa, 463 MPa, and 7.3 %). This strength-ductility synergy was attributed to the in-situ formation of a fine HCP phase through the stress-induced phase transformation (TRIP) effect. The fine HCP phase provided abundant FCC/HCP interfaces, thus enhancing strong back stress hardening and facilitating the deformation uniformity. In contrast, the as-cast HEA displayed coarse and straight FCC/HCP interfaces that hindered back stress hardening. Moreover, the interaction between the pre-existing HCP phase and the stress-induced HCP phase in the as-cast HEA tended to cause stress concentration and subsequent crack initiation, leading to reduced ductility in the as-cast HEA. These findings are expected to provide valuable insights for a better understanding of additively manufactured TRIP-assisted HEAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.