Abstract

The experimental study aims to increase the axial load capacities of reinforced concrete (RC) columns with square cross-section by carbon fiber textile composite (CFRP) strips. The main purpose of the study is to develop a strengthening method that does not adversely affect displacement ductility ratios and energy dissipation capacities. Improved strengthening details have been applied to a square cross-section RC column with low axial load capacity, the low compressive strength of concrete, and the inadequate number of stirrups, which are not designed according to regulations. The main variables examined in this study are the CFRP strip width, the spacing of CFRP strips, the use of anchorage in the overlap zone at CFRP strips, and the placement of CFRP strips horizontally or vertically to the column axis. In line with this study, eleven reinforced concrete columns with dimensions of 150x150x500 mm were produced. The ultimate axial load capacity, initial stiffness, displacement ductility ratios, and energy dissipation capacities of the test specimens were evaluated. It was investigated how the variables in the experiments affected the behavior of the columns. The performances of the details developed for strengthening have been examined and interpreted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.