Abstract

The mineralogical properties of tungsten mining waste mud (TMWM) make its valorisation and re-usage as an alumino-silicate source material to produce an alkali-activated binder without calcination is a challenge. Moreover, the dissolution of silicate and alumina species from TMWM is very slow. Despite the crystallinity of TMWM, this study demonstrates that its combination with other sources of the alumino-silicate source was the materials–such as red clay brick waste(RCBW),ground granulated blast furnace slag (GGBFS) and electric arc furnace slag (EAFS) – improved the compressive strength and the pore structure of the alkali-activated matrix.Thecombinedprecursors (90 vt.%TMWM+10 vt.%RCBW, 90 vt.%TMWM+10 vt.%GGBFS, and 90 vt.%TMWM+10 vt.%EAFS) were activated using a combination of alkaline activator solutions (sodium silicate and sodium hydroxide) with the ratio of 1:3(66.6wt.%sodiumsilicatecombined with 33.33 wt.% of NaOH 10M). The results show that the compressive strength increased from11.23MPa at 28 days to reach 24.98MPawhentheTMWMwaspartially replacedby10vt.%RCBW. In addition,this study shows that the interconnected porosity decreased where the critical pore size was reduced from 21.28 µm to 0.55 µm for the tungsten mining waste-based alkali-activated binder and the binary alkali-activated binder based on TMWM and RCBW.
 Keywords: Mining Waste, Alkali-activated, Microstructure, MIP, Metakaolin

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call