Abstract

This manuscript presents and discusses the results of an experimental study on the deformation behavior, strength, and microstructural development of cemented paste backfill (CPB) with chloride-bearing antifreeze (calcium chloride, CaCl2) in subzero environments. CPB samples with CaCl2 at various concentrations (0, 5, 15, and 35 g/L) were cured at different subzero temperatures (−1, −6, and −12°C) that represent temperatures to which CPBs may be exposed in mines located in permafrost or cold regions. Unconfined compressive strength (UCS) tests were conducted after specific curing time (7, 28, 60, and 90 days). Moreover, microstructural analyses and monitoring experiments (for volumetric water content and matric suction) were performed. The results showed that the addition of calcium chloride antifreeze reduced the strength of CPB and had a significant impact on its stress–strain behavior and microstructural characteristics. Furthermore, it was also found that the strength of CPB decreased with an increase of calcium chloride concentration and subzero curing temperature. These findings provide important guidance for mine backfilling work of CPB with chloride-bearing antifreeze additives and productivity improvement in subzero environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call