7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.3390/ma13194238
Copy DOIJournal: Materials | Publication Date: Sep 23, 2020 |
Citations: 16 | License type: CC BY 4.0 |
In this study, the effects of the mixing conditions of waste paper sludge ash (WPSA) on the strength and bearing capacity of controlled low-strength material (CLSM) were evaluated, and the optimal mixing conditions were used to evaluate the strength characteristics of CLSM with recyclable WPSA. The strength and bearing capacity of CLSM with WPSA were evaluated using unconfined compressive strength tests and plate bearing tests, respectively. The unconfined compressive strength test results show that the optimal mixing conditions for securing 0.8–1.2 MPa of target strength under 5% of cement content conditions can be obtained when both WPSA and fly ash are used. This is because WPSA and fly ash, which act as binders, have a significant impact on overall strength when the cement content is low. The bearing capacity of weathered soil increased from 550 to 575 kPa over time, and CLSM with WPSA increased significantly, from 560 to 730 kPa. This means that the bearing capacity of CLSM with WPSA was 2.0% higher than that of weathered soil immediately after construction; furthermore, it was 27% higher at 60 days of age. In addition, the allowable bearing capacity of CLSM corresponding to the optimal mixing conditions was evaluated, and it was found that this value increased by 30.4% until 60 days of age. This increase rate was 6.7 times larger than that of weathered soil (4.5%). Therefore, based on the allowable bearing capacity calculation results, CLSM with WPSA was applied as a sewage pipe backfill material. It was found that CLSM with WPSA performed better as backfill and was more stable than soil immediately after construction. The results of this study confirm that CLSM with WPSA can be utilized as sewage pipe backfill material.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.