Abstract
Civil engineering experimentation process is termed to be a costly process when it involves destructive testing of materials to obtain their strength and durability. Testing of materials through destructive process is century old procedure, but recent decade science involves the prediction of strength and durability using alternative methods. One such method to predict the strength in nondestructive method is employment of Soft computing technologies, this process is gaining impetus in the recent decade due to its accuracy, reliability, and versatility. In this research, we had employed artificial intelligence tool to predict the compressive strength of concrete with available real time laboratory-based data. AI tools require a greater number of data to predict the results but in this work and attempt is made to predict using a smaller number of data with more accuracy. Compressive, flexure and tensile strength of concrete is predicted using ANN techniques (Levenberg-Marquardt (L-M) process and Bayesian regularization (B-R)). Two input parameters were only employed to check the real time accuracy with a model that has 12 input layers and 18 hidden layers incorporated. Model output shows regression values of 0.97428, 0.92865 and 0.96772, concerned with L-M algorithmic model and 0.96573, 0.95625 and 0.91787 for B-R based model. Also, its observed that while using L-M algorithm the best performance was obtained at 1.3287 at epoch 2 for compressive strength and 0.12417 is achieved at epoch 1 for tensile strength and 0.021578 at epoch 3 concerned with flexural strength. Also with B-R algorithm provided best performance of 2.1488 at epoch 4 for compressive strength, a value of 0.43468 at epoch 3 for flexural strength and 0.015279 for tensile strength reached at epoch 30. Thus we propose the usage of ANN even with less number of data using this method for predicting the values of compressive strength of concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.