Abstract

Enzyme-induced carbonate precipitation (EICP) is an environment-friendly method for improving soil mechanical properties. The extraction and application of plant crude urease reduces the treatment cost. However, in terms of the efficiency of calcium carbonate production and cementation, crude urease is considered inferior to pure urease or urease bacteria. In this paper, urease extracted from soybean was used to explore the effects of urease activity, treatment method, number of treatments (NTs), injection rate, and curing time on the unconfined compressive strength and calcium carbonate distribution characteristics of EICP-treated sand. The results showed that, compared with the pre-mixing method and the two-phase method, the one-phase method produced higher strength and a more uniform distribution of calcium carbonate. The cementation efficiency decreased with the increase of urease activity. The high-rate injection can improve the treatment effect of high-activity urease. Under the same cementation level, high strength and calcium carbonate cementation efficiency can be achieved by one-phase-low-activity EICP treatment. Data Availability StatementAll data, models, and code generated or used during the study appear in the submitted article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.