Abstract
In this study, we investigated the effects of microfibers on the compressive and flexural behaviors of modified sulfur composites. Dicyclopentadiene-modified sulfur was used as the binder in the sulfur composites. Fifteen mix cases were tested by varying the volumetric ratios of steel and electric chemical resistant glass fibers. Fly ash (35% by volume) was included to not only increase strength and workability, but also ensure fiber dispersibility in the matrix. A non-contact displacement measurement technique, digital image correlation, was used in flexure tests to monitor the development of high strain zones and microcracks. The effect of fiber dosage on the porosity of sulfur composites was analyzed by quantifying the pore volume and size distribution through mercury intrusion porosimetry. The test results confirmed that the hybrid use of steel and glass fibers with a volume ratio of up to 4% was effective in improving the flexural stress-deflection response. The post-peak toughness ratio in flexure increased as the volume of microfibers increased. In addition, the total volume of hybrid microfibers generally had a positive correlation with the flexural strength. In contrast, the compressive strength of hybrid fiber-reinforced sulfur composites was more dependent on the portion of steel fibers than glass fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.