Abstract

Abstract Foam-forming technique imparts ceramic fiber paper with excellent uniformity, low density, and high porosity, but its strength loss must be compensated. Herein, a flexible and rigid foam-formed ceramic fiber network was manufactured by using different strength improvement methods and simultaneously investigated their strength and thermal insulation properties. Sufficient strength (1136 kPa) was achieved by combining Polyvinyl alcohol (PVA) 2 % and Polyester (PET) 3 %. However, the tensile strength of fiber networks would decrease under the contribution of inter-fiber bonding area reduced when the fiber length was longer than 24 mm. Benefiting from the developed flocculation system (aluminum sol-anionic polyacrylamide-carboxymethylcellulose), the strength of the foam-formed ceramic fiber network was 20 kPa, the retention rate increased from 75 % to 88 %, and the average aggregation factor of fillers in the Z direction was 0.67. By adjusting the ratio and Z-directional distribution of functional fillers, the sintered foam-formed paper with a tensile strength of 1300 kPa and compressive strength of 1000 kPa could be obtained. The thermal insulation performance (thermal conductivity 0.03252 W/(m·K)) was similar to the quartz fiber paper reinforced silica airgel, and the flame resistance was better than the commercialized aluminum silicate wool board.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call