Abstract

This study presents an investigation into high-temperature resistance of alkali-activated slag concrete (AASC). Sodium oxide (Na2O) concentrations of 4%, 5% and 6% of slag weight and liquid sodium silicate (SiO2) with modulus ratio of 0.8 ( mass ratio of SiO2 to Na2O ) were used as activators to activate granulated blast furnace slag (GBFS). All cylindrical specimens with the same binder content and liquid/binder ratio of 0.5 were cast and cured in the air, under the saturated limewater and in a curing room at relative humidity of 80% RH and temperature of 60 °C, respectively. Test results demonstrate that the high-temperature resistance of AASC decreased with an increase of temperature. The compressive strength and high-temperature resistance of AASC improved with an increase dosage of Na2O and AASC cured at relative humidity of 80% RH and temperature of 60 °C has the superior performance, followed the AASC by air curing and saturated limewater curing. The higher compressive strength and superior high-temperature resistance have been obtained in AASC than comparable OPC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.