Abstract
Adhesive joints have a wide range of applications in the civil engineering, automotive and aircraft industries. In the present research, we use the finite element method to systematically study the overall strength and interface failure mechanism of single lap joints, which are subjected to tensile loading, focusing on the effects of various system parameters including fracture energy of the adhesive layer, overlap length and adhesive layer thickness on the load-bearing capability of the joints. The results show that the overlap length and the adhesive fracture energy have combined influences on the load-bearing capability. On the other hand, a preliminary damage analysis of the adhesive layer is carried out, considering the situations when the loads arrive to the peak values. Furthermore, the interface behavior is investigated, including the interface stress analysis and interface slip. The rotation of the joint during loading and its influence factors are studied as well. Obtained results suggest that the interface stress distributions are related to the slip and the rotation angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.