Abstract

The development of laminated composite Mg alloy sheets, prepared by solid diffusion and roll bonding, is an effective way of improving the stiffness and surface properties of these materials while retaining their lightness. Laminated composites consisting of a core of Mg alloy between sheets of A5083 alloy as the coating material with Ti foil interlayers were prepared by solid diffusion and roll bonding. The laminated material had a strength and was resistant to cracking during deformation. Compounds that were formed and dispersed at the bonding interface between the Al and Mg alloys subjected to grain refinement improved the fracture toughness and strength of the composites, and it was important that these compounds were formed discontinuously. The fracture toughness of the laminated composite was twice that of the base Mg alloy, and its Young's modulus was 57 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.