Abstract

Experiments were carried out to examine the behaviour of aluminium foams under quasistatic shear loading. Special fixtures were designed to clamp the both ends of a beam-like specimen while the load was applied via a punch, which led to failure by shearing along the clearance near the fixed end. Specimens were made of CYMAT foams with two nominal relative densities (12% and 17%) and several values of width. This study focuses on the maximum strength under shear and the essential energy in fracture. It has been found that the ultimate shear force increases linearly with the width of the beam, so does the total energy absorbed. Two empirical formulae have been obtained which relates to the relative density, respectively, the ultimate shear strength and energy absorbed in shearing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.