Abstract

Aluminium alloys play an important role in overhead power transmission applications. All-aluminium alloy conductor cables require increasingly hard-to-achieve combinations of high tensile strength and high electrical conductivity. The problem is that a high strength is normally associated with a reduced electrical conductivity. Both heat-treatable 6xxx series aluminium alloys and work-hardening 1xxx series aluminium alloys are important contenders for these applications. By contrast, the addition of rare earths and/or transition metals to aluminium may provide further opportunities to achieve improved combinations of precipitation hardening, substructural hardening and elevated temperature stability. In this work, strength and electrical conductivity relationships are investigated for a range of 6xxx series aluminium alloys and an Al-Sc alloy. The Al-Sc alloy was produced by means of a direct laser metal deposition process that allowed more Sc to be placed into solid solution than by conventional casting or solution treatment. The paper explores the relative effects of composition, cold working and age hardening on the balance of strength and electrical conductivity, including examples of how improved combinations of both strength and conductivity can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.