Abstract
Municipal solid waste (MSW) is being generated every day, and its safe disposal is one of the major environmental challenges nowadays. The main focus of this research is to examine the usability of the soil-like inorganic component of MSW, named MSW rejected waste, as a geopolymer binder. In this study, the effect of mutual replacement of MSW rejected waste with ground granulated blast furnace slag (GGBFS) at 10% interval on the synthesis of geopolymer binder with reference to density, alkali concentration, and curing period is studied by conducting compressive strength, permeability, and durability tests. The design of mixes follows, according to their pre-determined compaction parameters, optimum moisture content, and maximum dry density. The curing conditions were found to be significant in affecting the properties of the geopolymer. The effect of acid environment on strength properties of geopolymer mixes has also been studied. The unconfined compressive strength, pulse wave velocity, water absorption, and microstructural analysis have been performed on designed mixes to identify the optimized design of the mixtures. Results showed that the strength increased with the increment of GGBFS percentage and increment of concentration of sodium hydroxide (NaOH) up to 8M.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.