Abstract

Sustainability issue in construction sector came forward over the last two decades due to concerns regarding using virgin materials as well as emission of greenhouse gases from production of raw materials. Cement is the prime constituents of concrete and contributes approximately 7% of global man made CO2 production. Interest in blended cements is growing because of its advantages as increased production economy, reduced CO2 emissions and fuel consumption. This paper discusses the effects of cement replacement with supplementary cementitious material fly-ash on the strength development, water permeability and rapid chloride penetration resistance of concrete over the curing age of365 days. Three different grades of concrete M38, M33 and M28, each with seven different fly-ash replacement level, 10,20,30,40,50, 60 and 70% were used for the experimental program. Ordinary Portland cement concrete was also used as reference concrete. Coefficient of permeability as well as rapid chloride penetration resistance was determined at an age of28, 56, 90,180 and 365 days whereas strength at 3, 7,28, 56, 90,180 and 365 days. Test results show that permeability of concrete decreases with the increase of fly-ash level up to an optimum value and then start to increase, whereas strength of concrete increases with the increase of fly-ash up to an optimum level and then starts to decrease. Among all the concretes studied, the optimum amount of cement replacement is reported to be 30%. The study reveals that fly-ash concrete is less permeable and achieves higher strength due to pozzolanic activity of fly-ashes that creates more durable calcium silicate hydrate and fills capillaries and bleed water channels occupied by water soluble lime. As a result fly-ash concrete inhibits the penetration of aggressive species including chloride which can effectively reduce the corrosion of the embedded steel reinforcement

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.