Abstract

Sandwich structures fabricated from an aluminium skinned foam enclosed within a carbon fibre reinforced composite structure have the potential application for high-performance on- and off-road automotive vehicles. The deformations and failure of these types of structures are presented, and results indicate that the application of aluminium face sheets with aluminium foam (AF) aids to prevent the delamination of the outer layers of carbon fibre reinforced polymers (CFRP). The load carrying capacity has been increased by utilising a manufacturing method to maintain the adhesion between the core and the skins until the failure stage is reached. The core shear and de-bonded issue associated with this type of sandwich structure can be addressed by this manufacture method. The peak average flexure load capacity of an aluminium foam sandwich structure (AFSS) with a completely wrapped around CFRP skin was 2800 N with a mass of 191 g. This compares favourably with previously used AFSS without the skins, which had a peak average load of 600 N and a mass of 125 g. An initial finite element model for comparison purposes has been developed to represent the structure’s behaviour and predict the associated failure loads. It is proposed that CFRP wrapped around AFSS enhances the structural performance without significant weight gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.