Abstract

The durability of bearing units of large machines depends mainly on the condition of their welded joints. With this in mind, we developed numerical models of the analyzed bearing units, for which we performed FEM simulations of the stresses in welded joints in several basic load cases. In each of the respective variants the technical condition of the bearing nodes was different and it corresponded to the severity of the degradation processes. Different positions of the superstructure in relation to the undercarriage were also taken into account. The simulations used the hot-spot method dedicated to FEM analyses of complex welded structures. We discovered that the loads have a significant influence on the values and distribution of von Mises principal stresses and their axial components. Based on the carried out analyses, we identified the most unfavorable load cases that generate the highest stresses in the welded joints of the assessed nodes. We also demonstrated that the applied method effectively assesses the stresses of welded joints subjected to variable working loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.