Abstract

Design requirements for pipelines regarding both ultimate strength and flow assurance in ultra deepwater scenarios motivated the development of a new sandwich pipe which is able to combine high structural and thermal insulation properties. In this concept, the annulus is filled with low cost materials with adequate thermal insulation properties and good mechanical resistance. The aim of this research work is to perform small-scale laboratorial tests and to develop a finite element model to evaluate the structural performance of such sandwich pipes with two different options of core material. After calibrated in view of the experimental results, a three-dimensional finite element model incorporating nonlinear geometric and material behavior is employed to perform strength analyses of sandwich pipes under combined external pressure and longitudinal bending. Ultimate strength envelopes for sandwich pipes are compared with those generated for single-wall steel pipes with equivalent collapse pressures. The study shows that sandwich pipe systems with either cement or polypropylene cores are feasible options for ultra deepwater applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call