Abstract

Soil moisture is a crucial state variable for understanding the water cycle. The increasingly available soil moisture data from remote sensing and models is rapidly facilitating improved hydrological analysis and evaluation of climate change impacts. To discern the degree of alteration of soil moisture, the patterns of spatiotemporal anomalies must be considered, but often product-specific uncertainties are overlooked. Such limitations are of particular concern for the operational monitoring and long-term evaluation of soil moisture. Among the sources of uncertainty jeopardizing remotely sensed and modeled soil moisture, this study evaluates over Europe (1) the heterogeneous spatial patches of validity, (2) the residual trends in the series, and (3) the sensitivity of anomaly detection to the baseline period of popular soil moisture products such as the Satellite Application Facility on Support to Operational Hydrology and Water Management (H SAF), the passive subset of the Climate Change initiative on SM (CCIp) and the European Drought Observatory (EDO) datasets. The inter-comparison of these remotely sensed and modeled soil moisture products by triple collocation analysis and against data of the international soil moisture network (ISMN) provides insightful results regarding (1) the contrasting patches of accurate soil moisture estimates, (2) the existence of residual temporal trends in the series, and (3) the differing sensitivity of the products to the baseline period for anomaly analysis. The factors impacting products are subject to debate, particularly concerning spatial and temporal consistency. Merged products combining H SAF, EDO and CCIp are also assessed to elucidate their potential and limitations for operational monitoring in comparison to individual products. Overall, the combined products equal or exceed the performance of individual products while incorporating specific benefits and drawbacks. Outcomes also inform about the best-performing product by area and period. All in all, the study illustrates the notable degree of consistency of commonly available soil moisture databases for multiple applications, despite some constraints, while highlighting the potential of merged soil moisture products for the operational monitoring of droughts within the European Drought Observatory (EDO) system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.