Abstract
High performance stream aggregation is critical for many emerging applications that analyze massive volumes of data. Incoming data needs to be stored in a sliding-window before processing, in case the aggregation functions cannot be computed incrementally. Updating the window with new incoming values and reading it to feed the aggregation functions are the two primary steps in stream aggregation. Although window updates can be supported efficiently using multi-level queues, frequent window aggregations remain a performance bottleneck as they put tremendous pressure on the memory bandwidth and capacity. This paper addresses this problem by introducing StreamZip, a dataflow stream aggregation engine that is able to compress the sliding-windows. StreamZip deals with a number of data and control dependency challenges to integrate a compressor in the stream aggregation pipeline and alleviate the memory pressure posed by frequent aggregations. In doing so, StreamZip offers higher throughput as well as larger effective window capacity to support larger problems. StreamZip supports diverse compression algorithms offering both lossless and lossy compression to integers as well as floating point numbers. Compared to designs without compression, StreamZip lossless and lossy designs achieve up to 7× and 22× higher throughput, while improving the effective memory capacity by up to 5× and 23×, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.