Abstract

Steady forcing at the wall of a channel flow is studied via direct numerical simulation to assess its ability of yielding reductions in turbulent friction drag. The wall forcing consists of a stationary distribution of spanwise velocity that alternates in the streamwise direction. The idea behind the forcing builds on the existing technique of the spanwise wall oscillation and exploits the convective nature of the flow to achieve an unsteady interaction with turbulence. The analysis takes advantage of the equivalent laminar flow, which is solved analytically to show that the energetic cost of the forcing is unaffected by turbulence. In a turbulent flow, the alternate forcing is found to behave similarly to the oscillating wall; in particular an optimal wavelength is found which yields a maximal reduction in turbulent drag. The energetic performance is significantly improved, with more than 50% of maximum friction saving at large intensities of the forcing, and a net energetic saving of 23% for smaller intensities. Such a steady, wall-based forcing may pave the way to passively interacting with the turbulent flow to achieve drag reduction through a suitable distribution of roughness, designed to excite a selected streamwise wavelength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.